Operating strategy to reduce the energy input of a flat-panel airlift photobioreactor with intrinsic static mixers

Ruppel V.1, Bergmann P.1,*, Scherz P.1, Trösch W.1

1 Subitec GmbH, Julius-Hölder-Str. 36, 70597 Stuttgart, Germany
2 University of Hohenheim - Institute of Food Science and Biotechnology, Garbenstraße 25, 70500 Stuttgart, Germany

Abstract
- Industrially relevant, dense phototrophic microalgal cultures in PBRs always experience photolimitation
- Turbulence is essential to frequently translocate cells to illuminated zones, but its generation comes at a cost
- FPA-PBR operating strategies reducing the mixing-related energy input were developed addressing
 - indoor cultivations by applying intermittent aeration and
 - outdoor cultivations by adapting the aeration rate
- Energy reductions of 37 % and 66 % were achieved respectively, without negatively influencing growth kinetics

Materials and Methods
- Process development followed two routes for outdoor bulk product and indoor high added-value compound production
- For outdoor cultivations:
 - FPA-PBR setup: 2 L FPA-PBR - PFD: 180-780 µmol m⁻² s⁻¹ - Aeration: 0.11-0.83vvm - 6 % v/v CO₂
- For indoor cultivations:
 - Intermittent aeration 2 L FPA-PBR - C. sorokiniana SAG211-8k - PFD: 450 µmol m⁻² s⁻¹ - Aeration: 0.24 vvm - Pulses: 5s on : 5s..20s off - 5 % v/v CO₂

Results and Conclusion
- With biomass concentrations exceeding 3 gDW L⁻¹ and PFDs increasing from sub- via quasi- to supra-saturating (180, 405 and 780 µmol m⁻² s⁻¹ respectively), increase in aeration rate results in
 - increased productivity
 - increased final biomass concentration
- During outdoor cultivations, aeration rate should be adjusted using PFD and biomass concentration as control parameters allowing for
 - increased productivity at intense light and high DW concentration
 - low-energy cultivation at dim light and low DW concentration
- Translated outdoors, this may reduce the energy input by 37 %

- During indoor cultivations
 - with static light supply, energy consumption can be reduced by intermittent aeration
 - Pulses up to 5 s on : 10 s off show no negative effect on culture proliferation
 - Prolonged pause intermittency results in reduced final biomass concentration as well as biofilm formation

Summary and Outlook
- Sophisticated strategies to manage the induction of turbulence within microalgal cultures were developed for outdoor and indoor applications
- These are capable of significantly reducing operational expenditures with respect to culture mixing
- The strategies will be further refined, adapted to other species and validated on larger scale, indoors and outdoors

Follow the code to see our short communication for further information or visit www.subitec.com/en